# a 17 Integers 11 ( 2011 ) on a Combinatorial Conjecture
نویسندگان
چکیده
Recently, Tu and Deng proposed a combinatorial conjecture about binary strings, and, on the assumption that the conjecture is correct, they obtained two classes of Boolean functions which are both algebraic immunity optimal, the first of which are also bent functions. The second class gives balanced functions, which have optimal algebraic degree and the best nonlinearity known up to now. In this paper, using three different approaches, we prove this conjecture is true in many cases with different counting strategies. We also propose some problems about the weight equations which are related to this conjecture. Because of the scattered distribution, we predict that an exact count is difficult to obtain, in general.
منابع مشابه
Upper bounds on the solutions to n = p+m^2
ardy and Littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. They believed that the number $mathcal{R}(n)$ of such representations for $n = p+m^2$ is asymptotically given by begin{equation*} mathcal{R}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), end{equation*} where $p$ is a prime, $m$ is a...
متن کاملSome difference results on Hayman conjecture and uniqueness
In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...
متن کاملOn the Diophantine Equation x^6+ky^3=z^6+kw^3
Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...
متن کاملINTEGERS 11 A ( 2011 ) Proceedings of Integers Conference 2009 RECURSIVELY SELF - CONJUGATE PARTITIONS
A class of partitions that exhibit substantial symmetry, called recursively selfconjugate partitions, are defined and analyzed. They are found to have connections to non-squashing partitions and other combinatorial objects.
متن کاملThe Probabilistic Method in Combinatorics
2 The Linearity of Expectation and small tweakings 11 2.1 Revisiting the Ramsey Number R(n, n) . . . . . . . . . . . . . . . . . . . 11 2.2 List Chromatic Number and minimum degree . . . . . . . . . . . . . . . 11 2.3 The Daykin-Erdős conjecture . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 An Example from Combinatorial Geometry . . . . . . . . . . . . . . . . . 14 2.5 Graphs with High...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011